Source code for nighres.intensity.lcat_denoising

import numpy as np
import nibabel as nb
import os
import sys
import nighresjava
from ..io import load_volume, save_volume
from ..utils import _output_dir_4saving, _fname_4saving, \
                    _check_topology_lut_dir, _check_available_memory


[docs]def lcat_denoising(image_list, image_mask, phase_list=None, ngb_size=3, ngb_time=10, stdev_cutoff=1.05, min_dimension=0, max_dimension=-1, save_data=False, overwrite=False, output_dir=None, file_names=None): """ LCaT denoising Denoise multi-contrast time series data with a local PCA-based method Parameters ---------- image_list: [niimg] List of input 4D magnitude images to denoise image_mask: niimg 3D mask for the input images phase_list: [niimg] List of input 4D phase images to denoise (optional) ngb_size: int, optional Size of the local PCA neighborhood, to be increased with number of inputs (default is 3) ngb_time: int, optional Size of the time window to use (default is 10) stdev_cutoff: float, optional Factor of local noise level to remove PCA components. Higher values remove more components (default is 1.05) min_dimension: int, optional Minimum number of kept PCA components (default is 0) max_dimension: int, optional Maximum number of kept PCA components (default is -1 for all components) save_data: bool Save output data to file (default is False) overwrite: bool Overwrite existing results (default is False) output_dir: str, optional Path to desired output directory, will be created if it doesn't exist file_names: [str], optional Desired base names for output files with file extension (suffixes will be added) Returns ---------- dict Dictionary collecting outputs under the following keys (suffix of output files in brackets) * denoised ([niimg]): The list of denoised input images (_lcat_den) * dimensions (niimg): Map of the estimated local dimensions (_lcat_dim) * residuals (niimg): Estimated residuals between input and denoised images (_lcat_err) Notes ---------- Original Java module by Pierre-Louis Bazin. Algorithm inspired by [1]_ with a different approach to set the adaptive noise threshold and additional processing to handle the time series properties. References ---------- .. [1] Manjon, Coupe, Concha, Buades, Collins, Robles (2013). Diffusion Weighted Image Denoising Using Overcomplete Local PCA doi:10.1371/journal.pone.0073021 """ print('\nLCaT denoising') # make sure that saving related parameters are correct if save_data: output_dir = _output_dir_4saving(output_dir, image_list[0]) den_files = [] for idx,image in enumerate(image_list): if file_names is None: name=None else: name=file_names[idx] den_file = os.path.join(output_dir, _fname_4saving(module=__name__,file_name=name, rootfile=image, suffix='lcat-den')) den_files.append(den_file) if phase_list is not None: for idx,image in enumerate(phase_list): if file_names is None: name=None else: name=file_names[idx] den_file = os.path.join(output_dir, _fname_4saving(module=__name__,file_name=name, rootfile=image, suffix='lcat-den')) den_files.append(den_file) if file_names is None: name=None else: name=file_names[0] dim_file = os.path.join(output_dir, _fname_4saving(module=__name__,file_name=name, rootfile=image_list[0], suffix='lcat-dim')) err_file = os.path.join(output_dir, _fname_4saving(module=__name__,file_name=name, rootfile=image_list[0], suffix='lcat-res')) if overwrite is False \ and os.path.isfile(dim_file) \ and os.path.isfile(err_file) : # check that the denoised data is the same too missing = False for den_file in den_files: if not os.path.isfile(den_file): missing = True if not missing: print("skip computation (use existing results)") denoised = [] for den_file in den_files: denoised.append(den_file) output = {'denoised': denoised, 'dimensions': dim_file, 'residuals': err_file} return output # start virtual machine, if not already running try: mem = _check_available_memory() nighresjava.initVM(initialheap=mem['init'], maxheap=mem['max']) except ValueError: pass # create lcat instance lcat = nighresjava.LocalContrastAndTimeDenoising() # set lcat parameters lcat.setNumberOfContrasts(len(image_list)) # load first image and use it to set dimensions and resolution img = load_volume(image_list[0]) data = img.get_data() #data = data[0:10,0:10,0:10] affine = img.get_affine() header = img.get_header() resolution = [x.item() for x in header.get_zooms()] dimensions = data.shape dims3d = (dimensions[0], dimensions[1], dimensions[2]) lcat.setDimensions(dimensions[0], dimensions[1], dimensions[2], dimensions[3]) lcat.setResolutions(resolution[0], resolution[1], resolution[2]) # input images # important: set image mask before adding images data = load_volume(image_mask).get_data() lcat.setMaskImage(nighresjava.JArray('int')( (data.flatten('F')).astype(int).tolist())) # important: set image number before adding images for idx, image in enumerate(image_list): #print('\nloading ('+str(idx)+'): '+image) data = load_volume(image).get_data() #data = data[0:10,0:10,0:10] lcat.setTimeSerieMagnitudeAt(idx, nighresjava.JArray('float')( (data.flatten('F')).astype(float))) if phase_list is not None: for idx,image in enumerate(phase_list): #print('\nloading ('+str(idx)+'): '+image) data = load_volume(image).get_data() #data = data[0:10,0:10,0:10] lcat.setTimeSeriePhaseAt(idx, nighresjava.JArray('float')( (data.flatten('F')).astype(float))) data = None # set algorithm parameters lcat.setPatchSize(ngb_size) lcat.setWindowSize(ngb_time) lcat.setStdevCutoff(stdev_cutoff) lcat.setMinimumDimension(min_dimension) lcat.setMaximumDimension(max_dimension) # execute the algorithm try: lcat.execute() except: # if the Java module fails, reraise the error it throws print("\n The underlying Java code did not execute cleanly: ") print(sys.exc_info()[0]) raise return # reshape output to what nibabel likes denoised_list = [] for idx, image in enumerate(image_list): den_data = np.reshape(np.array(lcat.getDenoisedMagnitudeAt(idx), dtype=np.float32), dimensions, 'F') header['cal_min'] = np.nanmin(den_data) header['cal_max'] = np.nanmax(den_data) denoised = nb.Nifti1Image(den_data, affine, header) denoised_list.append(denoised) if save_data: save_volume(den_files[idx], denoised) if phase_list is not None: for idx,image in enumerate(phase_list): den_data = np.reshape(np.array(lcat.getDenoisedPhaseAt(idx), dtype=np.float32), dimensions, 'F') header['cal_min'] = np.nanmin(den_data) header['cal_max'] = np.nanmax(den_data) denoised = nb.Nifti1Image(den_data, affine, header) denoised_list.append(denoised) if save_data: save_volume(den_files[len(image_list)+idx], denoised) dim_data = np.reshape(np.array(lcat.getLocalDimensionImage(), dtype=np.float32), dimensions, 'F') err_data = np.reshape(np.array(lcat.getNoiseFitImage(), dtype=np.float32), dims3d, 'F') # adapt header max for each image so that correct max is displayed # and create nifiti objects header['cal_min'] = np.nanmin(dim_data) header['cal_max'] = np.nanmax(dim_data) dim = nb.Nifti1Image(dim_data, affine, header) header['cal_min'] = np.nanmin(err_data) header['cal_max'] = np.nanmax(err_data) err = nb.Nifti1Image(err_data, affine, header) if save_data: save_volume(dim_file, dim) save_volume(err_file, err) return {'denoised': den_files, 'dimensions': dim_file, 'residuals': err_file} else: return {'denoised': denoised_list, 'dimensions': dim, 'residuals': err}